سفارش تبلیغ
صبا ویژن

مقاله جامدات در pdf

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله جامدات در pdf دارای 25 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله جامدات در pdf   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی مقاله جامدات در pdf ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن مقاله جامدات در pdf :

جامدات

جامد یک ماده متراکم است ، که توسط اتمهای نزدیک به هم که الگوی منظمی به نام شبکه را به وجود می آورند ایجاد می شود. این اتمها با نیروهایی قوی در کنار یکدیگر قرار گرفته اند ، که فقط اجازه حرکات خفیفی را می دهد . سختی یک جامد به آرایش و حرکت اتمهای آن بستگی دارد . مثلاَ عنصر کربن هم به شکل نرمی به نام گرافیت ، و هم به شکل یکی از سخت ترین جامدات روی زمین ، یعنی الماس، وجود دارد. تفاوت این دو شکل در آرایش اتمهایشان است.
کشسانی
کشسانی قابلیت یک جامد در بازگشتن به شکل اولیه خود پس از کشیده شدن یا هر تغییر شکل دیگر است . مثلاَ یک فنر کشیده شده پس از رها شدن به سرعت به شکل اولیه خود باز می گردد . اما اگر آن را بیش از حد بکشیم ، به شکل اولیه خود باز نمی گردد و حتی ممکن است پاره شود . با نزدیک شدن به حد شکستن ، فنر کشسانی خود را از دست می دهد و تغییر شکل دائمی می یابد . این حد ، حد کشسانی نامیده می شود.
قانون هوک
قانون هوک می گوید که نیروی اعمال شده به یک ماده با مقدار کشیده شدن متناسب است . یعنی مثلاَ اگر نیروی کشش وارد بر یک فنر را دو یا سه برابر کنید ، دو یا سه برابر بیشتر کشیده خواهد شد . اما این قانون پس از رسیدن به حد کشسانی ماده ، دیگر برقرار نیست. رابرت هوک پس از آتش سوزی بزرگ لندن در سال 1666 ، بازرس ارشد شهر لندن شد . او برای کمک به بازرسانی شهر ، رابطه بین کشسانی (الاستیسیته) مواد و نیروهای اعمال شده به انها را مورد تحقیق قرار داد.

طبقه‌بندی شبکه‌های بلوری
شبکه‌های بلوری بر حسب تقارن در شش سیستم بلوری طبقه‌بندی می‌شوند. یک سیستم بلور را می‌توان بر حسب ابعاد سلول واحد در امتداد سه محور آن (a , b , c) و اندازه سه زاویه بین این محورها ( , , ) توصیف کرد.

مکعبی a = b = c
ْ = = = 90 مکعبی ساده
مکعبی مرکز پر
مکعبی با وجوه مرکز پر
مکعب مستطیل یا راست گوشه (دارای 4 شبکه بلوری) a b c
= = = 90
چهار گوشه ( تتراگونال ) a = b c
= = = 90 دارای دو شبکه بلوری
تک شیب ( مونو کلینیک ) = = 90 90
a b c دارای دو شبکه بلوری
سه شیب (تری کلینیک) a b c
90 دارای دو شبکه بلوری
شش گوشه (هگزا گونال) = = 90 و a = b c
= 120

چون سیستم بلوری خود دارای چند ساختار است مانند سیستم مکعبی که خود دارای سه نوع شبکه بلور است، بطور کلی 14 شبکه بلوری وجود دارد و بسیاری از اطلاعات در مورد ساختمان داخلی بلورها از آزمایشهای پرش اشعه ایکس بدست می‌آید.
انواع جامدات بلوری
جامدات بلوری بر حسب ذرات تشکیل دهنده شبکه بلور به گروههای زیر تقسیم می‌شوند.
جامدات یونی
اجزای تشکیل دهنده ساختمان این بلور ،‌ یونها هستند. استقرار یونها در یک بلور بر طبق یک الگوی هندسی معین است. ساختمان بلوری چنان است که نیروهای جاذبه بین یونهای مثبت و منفی به‌مراتب بیشتر از نیروهای دافعه بین یونهایی است که بار مشابه دارند. ترکیبات یونی در دمای اتاق جامدند و نقطه ذوب بالایی دارند و در حالت مذاب یا بصورت محلولهای آبی رسانای خوب الکتریسیته هستند.
جامدات مولکولی
نقاط شبکه‌ای در بلور ترکیبات کووالانسی توسط مولکولها اشغال شده‌اند و نیروهای بین مولکولی که مولکولها را در شبکه نگه می‌دارند، به اندازه نیروهای الکترواستاتیکی که در بلورهای یونی مشاهده می‌شوند، قوی نیستند. از این‌رو بلورهای مولکولی نرم و دارای نقاط ذوب پایین هستند نارسانا هستند و یا ممکن است جامدات مولکولی قطبی در حالت مذاب رسانایی اندکی داشته باشند.
بلورهای شبکه‌ای (بلورهای اتمی)
در ساختمان این بلورها نقاط شبکه‌ای توسط اتمهایی اشغال شده‌اند که با شبکه‌ای از پیوندهای کووالانسی به هم متصل می‌شوند. در این بلورها تشخیص یونها از بلورها غیر ممکن است. در واقع کل بلور را می‌توان بعنوان یک مولکول عظیم تصور کرد. به همین دلیل گاهی به آنها مواد درشت مولکولی هم می‌گویند. الماس مثالی از این نوع بلورهاست که در آن اتمهای کربن توسط پیوندهای کووالانسی در یک ساختمان سه بعدی به هم متصل هستند. این مواد نقاط ذوب و جوش بالا دارند، فوق العاده سخت بوده و نارسانا‌ هستند و در تمام حلالهای معمولی نامحلولند و این بعلت داشتن پیوندهای کووالانسی فراوان آنهاست که برای فرو ریختن ساختمان بلوری باید گسسته شوند.
بلورهای فلزی
شبکه بلوری این جامدات از اتمهای فلزی ( یونهای مثبت و الکترونهای متحرک آنها ) تشکیل شده است. پیوند فلزی پیوند قوی است و به این علت است که یونهای مثبت بصورت تنگاتنگ در شبکه بلوری کنار هم و در میان الکترونهای متحرک قرار گرفته‌اند. این جامدات ، چگالی بالا و نقطه ذوب بالایی دارند و رسانای گرمایی و الکتریکی خوبی هستند.

جدول انواع جامدات بلوری
نوع جامد بلوری ذرات تشکیل دهنده نیروی جاذبه خواص نمونه
یونی کاتیونها و آنیونها جاذبه الکترواستاتیکی نقطه ذوب بالا ، سخت ، شکننده ، رسانای الکتریکی خوب در حالت مذاب Nacl , MgO ,
جامدات مولکولی مولکولهای قطبی
مولکولهای غیر قطبی لاندن و دو قطبی- دو قطبی
لاندن نقطه ذوب پایین ، نرم ، نارسانا یا رسانای بسیار ضعیف الکتریسیته در حالت مایع
نفتالین ، ،
بلورهای شبکه‌ای یا درشت ملکولی اتمها پیوندهای کووالانسی نقطه ذوب بسیار بالا ، خیلی سخت ، نارسانا الماس ، کاربید سیلسیم ،
فلزی یونهای مثبت و الکترونهای متحرک پیوند فلزی نقطه ذوب نسبتا بالا ، نرم یا سخت ، چکش خوار ، قابلیت تورق ، رسانای خوب گرما و الکتریسیته Na ، CU ، Ag ، fe

نگاه کلی
جامدات فلزی جز جامدات بلوری طبقه‌بندی می‌شوند و در مقایسه با سایر جامدات بلوری ویژگیهای فیزیکی و شیمیایی خاصی دارند که از پایین بودن پتانسیل یونش و کم بودن الکترونگاتیوی اتمهای آنها ناشی می‌شود. خواص فیزیکی و شیمیایی جامدات فلزی حاکی از ساختمانی است که در آنها الکترونها نسبتا متحرکند. تنها با این نوع ساختمان مخصوص فلزات است که می‌توان رسانایی خوب ، سهولت از دست دادن الکترون و تشکیل یونهای مثبت را توجیه کرد.

در یک جامد فلزی الکترونهای خارجی اتمهای فلزی بطور نسبتا سستی به اتم وابسته‌اند و آزادانه در سراسر یک بلور فلزی حرکت می‌کنند. باقیمانده اتمها یعنی یونهای مثبت فلزی نقاط شبکه‌ای ثابت را در بلور اشغال می‌کنند. ابر منفی الکترونهایی که آزادانه در حال حرکت هستند بلور را نگه می‌دارند.

خواص جامدات فلزی (بلورهای فلزی)
در اینجا به خواصی از فلزات می‌پردازیم که وجه تمایز آنها از سایر جامدات بلوری (جامدات یونی ، مولکولی و; ) است.

• فلزات غیر فعال هستند همه آنها بجز جیوه در 25 درجه سانتیگراد جامدند. جامدات فلزی نقاط ذوب بسیار متفاوتی دارند. بعنوان مثال نقطه ذوب برخی از آنها مانند سدیم کمی بالاتر از دمای معمولی است (29C) و نقطه ذوب برخی دیگر مانند تنگستن به چندین هزار درجه سلیسیوس می‌رسد. (3380 در جه سیلسیوس)
• فلزات در آب و حلالهای آلی نامحلول هستند. هیچ فلزی بطور حقیقی در آب حل نمی‌شود. تعدادی از فلزات فعال با آب بطور شیمیایی ترکیب می‌شوند و گاز هیدروژن آزاد می‌کنند. جیوه مایع بسیاری از فلزات را در خود حل کرده و محلولهایی به نام ملغمه ایجاد می‌کنند.
• فلزات رسانای خوب جریان الکتریسیته هستند و در میان جامدات بلوری فلزات از این نظر که رسانای خوب الکتریکی در حالت جامد هستند منحصر به فرد است. جریان الکتریکی ناشی از حرکت الکترونهای داخل یک فلز است که تحت تاثیر یک میدان الکتریکی خارجی قرار می‌گیرد.
• فلزات رسانایی گرمایی بالایی دارند و این ویژگی هم با توجه به تحرک زیاد الکترونی بلورهای فلزی توجیه می‌شود. الکترونهای والانس یک فلز گرما را بصورت انرژی جنبشی جذب کرده و بعلت حرکت نسبتا آزاد خود آن را سریعا به تمام قسمتهای فلز منتقل می‌کنند. ولی جامداتی که الکترونها در آنها مستقر هستند رسانایی گرمایی کمتری نشان می‌دهند، زیرا در این مواد رسانایی گرمایی فقط از طریق حرکت یونها یا مولکول می‌تواند انجام گیرد که فرآیند کندی است.
• جلای فلزی در یک بلور فلزی الکترونهای والانس به تمام اتمهای بلور وابسته بوده و خیلی تحرک دارند بنابراین می‌توانند با جذب نور به ترازهای بالاتر منتقل شوند. وقتی این الکترونها به ترازهای پایین‌تر برمی‌گردند، نور تابش می‌کنند. جلای فلزات ناشی از این انتقالهای الکترونی است. یک جامد فلزی از ایجاد پیوند فلزی بین اتمهای آن ایجاد می‌شود. پیوند فلزی تنها از تاثیر متقابل اربیتالهای لایه والانس حاصل می‌شود و فاصله میان اتمها در یک بلور فلزی از روی همپوشانی اربیتالهای والانس تعیین می‌شود و اربیتالهای لایه‌های داخلی تاثیر متقابل قابل ملاحظه‌ای در تعیین این فاصله ندارند.

مدل دریای الکترون تجسم ساده‌ای از پیوند فلزی است.
در این مدل شبکه فلزی را می‌توان بصورت ردیف‌های منظم از یونهای مثبت فرض کرد که در دریایی از الکترونهای متحرک شناور نگه داشته شده‌اند. در این مورد ممکن است که الکترونها مدتی در مجاورت کاتیون فلزی باقی بمانند، اما بطور دائم در میان دو کاتیون فلزی حبس نمی‌شوند و دائما در حال تحرک هستند. بر اساس مدل دریای الکترون قدرت پیوند فلزی با مقدار بار مثبتی که شبکه را اشغال کرده‌اند، بستگی مستقیم دارد.

در بلورهای فلزی بر خلاف بلورهای یونی مکان یونهای مثبت را می‌توان بدون از هم پاشیدن بلور تغییر داد و این بعلت توزیع یکنواخت بار است که توسط الکترونهایی که حرکت آزادانه دارد تامین می‌شود. بلورهای فلزی به آسانی تغییر شکل می‌دهند. بیشتر فلزات دارای خاصیت چکش خواری ، تورق و مفتول شدن هستند.

ساختار بلوری فلزات
بلورهای فلزی معمولا دارای یکی از ساختارهای مکعبی مرکز پر ، مکعبی با وجوه مرکز پر و یا شش گوشه فشرده هستند. آرایش هندسی اتمها در بلورهای مکعبی با وجوه مرکز پر و شش گوشه فشرده چنان است که هر اتم دارای عدد کوئوردینانسیون 12 است. فضای خالی در این دو گروه بلور به میزان حداقل است.

ساختمان مکعبی مرکز پر نسبت به این ساختمانهای فشرده اندکی باز و عدد کوئوردینانس هر اتم 8 است. چگالی نسبتا زیاد اغلب فلزات را می‌توان با توجه به ساختمان فشرده بلوری آنها توجیه کرد. معدودی از فلزات مانند منگنز و جیوه در این ساختارها قرار نمی‌گیرند. برخی از فلزات هم دارای چند شکل بلوری هستند مثلا کلسیم در شرایط مناسب ممکن است هر یک از سه ساختمان را داشته باشد.
هدف از جداسازی ، حذف مزاحمت‌ها ، غلیظ کردن محلول مورد نظر و یا سایر موارد است. برای جداسازی از اختلاف در خصوصیات فیزیکی استفاده می‌شود، مثل فراریت ، حلالیت و ضریب تقسیم مواد__ و ; . در آنالیز و جداسازی مواد مختلف از تکنیک‌های ویژه‌ای برحسب نوع و ساختار مواد و مخلوط‌ها استفاده می‌شود که برخی از آنها که معروف بوده و حائز اهمیت بیشتری هستند، در زیر می‌آوریم.
تبلور
هدف از تبلور ، جداسازی ناخالصی از اجسام جامد است. در این روش ، ابتدا جامد ناخالص را در یک حلال گرم حل می‌کنند، سپس محلول را صاف می‌کنند. ناخالصی‌ها در فاز مایع باقی می‌مانند. اگر تبلور طی چند مرحله صورت گیرد، به آن تبلور جزء به جزء می‌گویند. در این روش انتخاب حلال از اهمیت بالایی برخوردار است. اگر از تکنیک ذوب برای جداسازی ناخالصی از جامد استفاده شود، به آن تصفیه ذوب گویند.
این روش در جدا کردن ناخالصی‌های ژرمانیم و اسید بتروییک کاربرد دارد. در این فرآیند ، ضریب تقسیم برابر با نسبت غلظت ناخالصی در فاز جامد به غلظت ناخالصی در فاز مایع است.
تقطیر
اگر هدف از تقطیر ، جداسازی یک مخلوط به اجزای بالا باشد، از تقطیر ساده برای جداسازی اجزاء استفاده می‌شود. اما اگر همه اجزاء فرار باشند، از تقطیر جزء به جزء برای جداسازی استفاده می‌شود. اگر یک مخلوط تولید آزئوتروپ کند، ( مثل آب و الکل) نمی‌توان از روش تقطیر جزء به جزء ، اجزای آن را جدا کرد. برای جداسازی این مخلوط از روش‌های تقطیر با بخار آب ، تقطیر در خلاء و تقطیر ناگهانی استفاده می‌کنند.

در تقطیر با بخار آب هیچگاه درجه حرارت تقطیر از نقطه جوش آب بیشتر نمی‌شود. ترکیباتی نظیر تولوئن ، اتیلن ، گلیسیرین و اسیدهای چرب از این طریق جدا می‌شوند. برای جلوگیری از تجزیه مایعاتی که دارای نقطه جوش بالایی هستند از تقطیر در خلاء استفاده می‌شود. با کاهش فشار ، نقطه جوش مایع کاهش پیدا می‌کند.

در تهیه آب آشامیدنی از آب دریا و تهیه آب مقطر نیروگاه‌ها از تقطیر ناگهانی استفاده می‌شود. در این روش مایع بطور مداوم وارد و بخار بطور مداوم خارج می‌شود.
رسوب دادن
نوعی روش جداسازی است که اساس آن اختلاف حلالیت اجسام می‌باشد. یعنی جزیی که حلالیت کمتری دارد زودتر جدا می‌شود. با افزایش نیروی جاذبه سرعت ته‌نشین شدن افزایش پیدا می‌کند. عمل سانتریفوژ در واقع بر همین اساس است.

استخراج
اساس این روش ، اختلاف حلالیت یک جزء در دو حلال غیر قابل حل در یکدیگر است. اگر دو حلال غیر قابل استخراج ، مایع باشند، به این روش استخراج مایع ـ مایع گویند و اگر یک جسم جامد به وسیله یک حلال استخراج شود، به آن استخراج جامد ـ مایع گویند (مثل استخراج اسانس‌ها ، عصاره‌ها و روغن از دانه‌های گیاهی). عموما دو فاز مورد استفاده ، یکی آب است و دیگری یک حلال آلی.

مقداری از جسم در فاز آبی و مقداری نیز در فاز آلی می‌باشد. بازده استخراج با ضریب تقسیم نسبت مستقیم دارد. دوبار استخراج با حجم کمتر از حلال آلی همیشه موثر از یک بار استخراج با حجمی مساوی دو برابر حجم اول است. چون در حالت اول ، مقدار وزن ماده باقی‌مانده محلول در آب ، کمتر از حالت دوم خواهد بود.

کروماتوگرافی
اساس کروماتوگرافی ، جذب سطحی مواد و توزیع آنها در دو فاز می‌باشد. یکی از فازها ثابت و فاز دیگر متحرک است که نمونه مورد نظر در فاز متحرک جدا می‌شود. فاز ثابت یا جامد است و یا مایع و فاز متحرک یا مایع است و یا گاز . اگر فاز ثابت ، جامد و فاز متحرک ، مایع باشد، به آن کروماتوگرافی مایع ـ جامد ( LSC ) گویند. اگر فاز متحرک ، گاز و فاز ثابت ، جامد باشد، به آن کروماتوگرافی گاز – جامد ( GSC ) گویند. اگر فاز متحرک ، مایع و فاز ثابت نیز مایع باشد به آن کروماتوگرافی مایع ـ مایع ( LLC یا HPLC ) گویند و در نهایت اگر فاز متحرک ، گاز و فاز ثابت ، مایع باشد، به آن کروماتوگرافی گاز – مایع ( GLC یا VPC ) گویند.

در LSC ، جدا شدن بر اساس جذب سطحی یا تعریض یون‌ها و یا تشکیل کمپلکس می‌باشد. در GSC اساس ، جداسازی جذب سطحی است. در LLC و GLC ، مواد بر اساس توزیع بین دو فاز جدا می‌شوند. پس کروماتوگرافی روشی برای جداسازی مخلوط بدلیل اختلاف تحرک آنها می‌باشد.

کروماتوگرافی LSC در واقع نوعی کروماتوموگرافی جذبی است که مواد بر اساس اختلاف در قابلیت جذب خود روی سطح جامد از یکدیگر جدا می‌شوند. در GSC نیز اساس جداسازی جذب سطحی فاز گاز روی سطح جامد است. از این روش برای خالص سازی گازها استفاده می‌شود.
کروماتوگرافی تبادل یونی
کروماتوگرافی تبادل یونی ، روشی است که در آن ، یون‌ها بین یک محلول و یک فاز جامد ( رزین ) مبادله می‌شوند. این تبادل ، برگشت پذیر است. فاز جامد در آب ، غیر محلول بوده و دارای بنیان‌های اسیدی و بازی باشد. نوع معدنی این مواد جامد ، ممکن است شبیه زئولیت‌ها باشند و نوع جدید آنها از مشتقات هستند و برای جداسازی فلزات قلیایی خاکی بکار می‌روند. رزین‌های تبادل یونی ، منشا آلی دارند و از پلیمرهای با وزن مولکولی بالا ساخته می‌شوند.

تشکیل این رزین‌ها بر اساس پلیمریزاسیون پلی‌استیرن و وینیل‌بنزن استوار است. رزین‌ها به دو نوع تعویض کننده آنیونی و کاتیونی تقسیم می‌شوند. هر کدام از این تعویض کننده‌ها به نوع بازی ضعیف و قوی و اسیدی ضعیف و قوی تقسیم می‌شوند.
یونانیان باستان ، عالم را متشکل از چهار عنصر آتش ، خاک ، آب و هوا می‌دانستند. امروزه دانشمندان بکمک این عناصر ، تمام اجزای تشکیل دهنده جهان را آن طور که هست ، توضیح می‌دهند. آتش بیانگر انرژی بوده و سه عنصر دیگر نشان دهنده سه حالت از ماده جامد ، مایع و گاز) می‌باشند. بر طبق این تقسیم بندی ، مواد جامد دارای شکل و ابعاد مشخصی بوده و همچنین جرم ، حجم و وزن مشخصی دارند.

مایعات و گازها شاره هستند، یعنی جریان می‌یابند. این اجسام شکل معینی ندارند و شکل ظرفی را که در آن قرار دارند بخود می‌گیرند، در حالیکه مقدار معینی دارند. مثلا مقدار آب ، دی اکسید کربن ، هوا ، شیر و غیره جرم قابل اندازه گیری و معینی دارند، اما نمی‌توانند همانند جامدات با اعمال نیروی پس زنی کشانی ، در مقابل تغییر شکل ، مقاومت کنند.
آزمایشات ساده
• مقدار معینی مایع ، حجم مشخصی دارد، گاز چنین نیست. اگر یک لیتر شیر را در چهار لیوان بریزیم، در مجموع همان یک لیتر حجم را اشغال می‌کند. حجم اشغال شده توسط سطح افقی بالای شیر در لیوان مشخص می‌شود. همین سطح است که باعث تمایز مایعات از گازها می‌شود.
• اگر گاز سنگین و قابل روئیت (رنگی) کلر را از ظرفی به ظرف دیگر بریزیم و در ظرف را باز بگذاریم ، گاز درون ظرف باقی نمی‌ماند. گازها همانند مایعات ، سطح افقی در بالای حجم اشغال کرده خود ندارند و در همه جا پخش می‌شوند. بنابراین ، حجم گاز برابرحجم هر ظرفی است که در آن قرار می‌گیرد.
جامد
در حالت جامد ، نیروهای بین مولکولی ، بقدری قویتر از انرژی جنبشی هستند که باعث سخت شدن جسم در نتیجه عدم جاری شدن آن می‌گردند. جامدات شکل و حجم معینی دارند. در جامدات فاصله مولکولها مانند فاصله آنها در مایع است. جامدات نمی‌توانند مانند وضعیتی که حالات مایع و گاز دارند، آزادانه به اطراف حرکت کنند. بلکه ، در جامد ، مولکولها در مکانهای خاصی قرار می‌گیرند و فقط می‌توانند در اطراف این مکانها حرکت نوسانی رفت و برگشتی بسیار کوچک انجام دهند.

این حرکت نوسانی ، بخصوص در جامدات بلورین ، کاربردهای صنعتی و علمی زیادی را برای این دسته از مواد به دنبال دارد.
مایع
در حالت مایع ، مولکولها بهم نزدیک‌تر بوده، بطوریکه نیروهای مابینشان قویتر از انرژی جنبشی آنان می‌باشد. از طرف دیگر ، نیروها آنقدر قوی نیستند که قادر به ممانعت از حرکت مولکولها گردند. از این روست که جریان مایع از ظرفی به ظرف دیگر شدنی است، اما نسبت سرعت جاری شدن آب در مقایسه با مایعات دیگر از قبیل روغنها و گلسیرین بسیار متفاوت است که این تفاوت در سرعت جاری شدن ، میزان مقاومت یک مایع در مقابل جاری شدن ،یعنی ویسکوزیته آن خوانده می شود که خود تابعی از شکل ، اندازه مولکولی ، درجه حرارت و فشار می‌باشد. بنابراین مایعات حجم معین و شکل نامعینی دارند.

فاصله مولکولها در مایعات در مقایسه با گازها بسیار کم است. در مایعات ، مولکولها به اطراف خود حرکت می‌کنند و به سهولت روی هم می‌لغزند و راحت جریان (شارش) پیدا می‌کنند. مواد مایع با قابلیت شکل پذیری و جریان یافتن در شبکه‌های ریز ، کاربردهای زیادی در صنعت پیدا کرده‌اند.
گاز
حالت فیزیکی مواد در شرایط فشار و درجه حرارت طبیعی ، بستگی به اندازه مولکولی و نیروهای فی‌مابین آن دارد. اگر مقدار کمی از یک گاز ، در یک تانک نسبتا بزرگی قرار گیرد، مولکولهای آن با سرعت در سرتاسر تانک پخش می‌شوند. پخش سریع مولکولهای گاز دلالت بر آن می‌کند که نیروهای موجود فی‌مابین مولکولها ، بمراتب ضعیفتر از انرژی جنبشی آن است و از آنجایی که ممکن است مقدار کمی از یک گاز در سرتاسر تانک یافت شود، نشان دهنده آن است که مولکولهای گاز باید نسبتا از هم فاصله گرفته باشند. بنابراین گازها شکل و حجمشان بستگی به ظرفی دارد که در آن جای دارند.

در حالت گازی ، مولکولها آزادانه به اطراف حرکت کرده و با یکدیگر و نیز با دیواره ظرف برخورد می‌کنند. فاصله مولکولها در حالت گازی در حدود چند ده برابر فاصله آنها در حالت مایع و جامد است. اگر در یک ظرف نوشابه پلاستیکی را بسته و آنرا متراکم کنید و سپس آنرا با آب پر کرده و دوباره سعی کنید که آنرا متراکم کنید، در حالت اول بعلت فاصله زیاد بین مولکولی در گاز ، متراکم کردن سنگین‌تر و سخت‌تر صورت می‌گیرد، در صورتی که در حالت دوم چنین نیست.
پلاسما
پلاسما حالت چهارمی از ماده است که دانش امروزی نتوانسته آنها را جزو سه حالت دیگر پندارد و مجبور شده آنرا حالت مستقلی به حساب آورد. این ماده با ماهیت محیط یونیزه ، ترکیبی از یونهای مثبت و الکترون با غلظت معین می‌باشد که مقدار الکترونها و یونهای مثبت در یک محیط پلاسما تقریبا برابر است و حالت پلاسمای مواد ، تقریبا حالت شبه خنثایی دارد. پدیده‌های طبیعی زیادی از جمله آتش ، خورشید ، ستارگان و غیره در رده حالت پلاسمایی ماده قرار می‌گیرند.

پلاسما شبیه به گاز است، ولی مرکب از ذرات باردار متحرکی به نام یون است. یونها بشدت تحت تاثیر نیروهای الکتریکی و مغناطیسی قرار می‌گیرند. مواد طبیعی در حالت پلاسما عبارتند از انواع شعله ، بخش خارجی جو زمین ، اتمسفر ستارگان ، بسیاری از مواد موجود در فضای سحابی و بخشی از دم ستاره دنباله‌دار و شفقهای قطبی شمالی. نمایش خیره کننده از حالت پلاسمایی ماده است که در میدان مغناطیسی جریان می‌یابد.

بد نیست بدانید که دانش امروزی حالات دیگری از جمله برهمکنش ضعیف و قوی هسته‌ای را نیز در دسته‌بندیها بعنوان حالات پنجم و ششم ماده بحساب می‌آورد که از این حالات در توجیه خواص نکلئونهای هسته ، نیروهای هسته‌ای ، واکنش های هسته‌ای و در کل ((فیزیک ذرات بنیادی استفاده می‌شود.
چگال بوز-اینشتین
حالت پنجم با نام ماده چگال بوز-اینشتین (Booze-Einstein condensate) که در سال 1995 کشف شد، در اثر سرد شدن ذراتی به نام بوزون‌ها (Bosons) تا دماهایی بسیار پایین پدید می‌آید. بوزون‌های سرد در هم فرومی‌روند و ابر ذره‌ای که رفتاری بیشتر شبیه یک موج دارد تا ذره‌های معمولی ، شکل می‌گیرد. ماده چگال بوز-اینشتین شکننده‌ است و سرعت عبور نور در آن بسیار کم است.
چگال فرمیونی
حالت تازه هم ماده چگال فرمیونی (Fermionic condensate) است. “دبورا جین” (Deborah Jin) از دانشگاه کلورادو که گروهش در اواخر پاییز 1382 ، موفق به کشف این شکل تازه ماده شده‌ است، می‌گوید: “وقتی با شکل جدیدی از ماده روبرو می‌شوید، باید زمانی را صرف شناخت ویژگیهایش کنید. آنها این ماده تازه را با سرد کردن ابری از پانصدهزار اتم پتاسیم با جرم اتمی 40 تا دمایی کمتر از یک میلیونیم درجه بالاتر از صفر مطلق پدیدآوردند. این اتمها در چنین دمایی بدون گرانروی جریان می‌یابند و این ، نشانه ظهور ماده‌ای جدید بود. در دماهای پایین‌تر چه اتفاقی میافتد؟ هنوز نمیدانیم.”

ماده چگال فرمیونی بسیار شبیه ماده چگال بوز-اینشتین (BEC) است. ذرات بنیادی و اتمها در طبیعت می‌توانند به شکل بوزون یا فرمیون باشند. یکی از تفاوتهای اساسی میان آنها حالتهای کوانتومی مجاز برای ذرات است. تعداد زیادی بوزون می‌توانند در یک حالت کوانتومی باشند ، مثلا انرژی ، اسپین و ; آنها یکی باشد ، اما مطابق اصل طرد پائولی ، دو فرمیون نمی‌توانند همزمان حالتهای کوانتومی یکسان داشته باشند.

برای همین ، مثلا در آرایش اتمی ، الکترونها که فرمیون هستند، نمی‌توانند همگی در یک تراز انرژی قرار گیرند.در هر اوربیتال تنها دو الکترون که اسپین‌های متفاوت داشته باشند، جا می‌گیرد و الکترونهای بعدی باید به اوربیتال دیگری با انرژی بالاتر بروند. بنابراین اگر فرمیونها را سرد کنیم و انرژی آنها را بگیریم ، ابتدا پایین‌ترین تراز انرژی پر می‌شود ، اما ذره بعدی باید به ترازی با انرژی بالاتر برود.

وجود ماده چگال فرمیونی همانند ماده چگال یوز- اینشتین سالها قبل پیش‌بینی شده و خواص آن محاسبه شده بود ، اما رسیدن به دمای نزدیک به صفر مطلق که برای تشکیل این شکل ماده لازم است تاکنون ممکن نشده بود. هر دو از فرورفتن اتمها در دماهایی بسیار پایین ساخته می‌شوند. اتمهای BEC بوزون ‌هستند و اتمهای ماده چگال فرمیونی ، فرمیون.
علم ، طبیعت را بر حسب ماده و انرژی تفسیر می کند.ماده ، یعنی آنچه که تمام جهان از آن ترکیب یافته است را می توان چنین تعریف کرد: ماده چیزی است که جرم دارد و فضا را اشغال می کند. جرم پیمانه ای از کمیت ماده است. جسمی که تحت تاثیر نیروی خارجی نیست، مایل است که به حال سکون بماند و اگر در حال حرکت باشد مایل است که به حرکت یکنواخت خود ادامه دهد.این خاصیت اینرسی نامیده می شود.جرم یک جسم متناسب با اینرسی آن است.

جرم یک جسم تغییر ناپذیر است اما وزن آن چنین نیست. وزن، نیروی جاذبه ثقلی است که از طرف زمین بر جسم اعمال می شود. بنابراین، وزن یک جسم معین بر حسب فاصله آن از مرکز زمین تغییر می کند. وزن یک جسم با جرم آن و با جاذبه ثقلی زمین نسبت مستقیم دارد. بنابراین در هر جای معین، دو جسم که جرم مساوی داشته باشند، وزن آنها با هم برابر است.

جرم یک جسم را می توان با یک ترازو معین کرد . برای این کار جرم استاندارد را در یک کفه ترازو و جسمی را که جرم نامعلومی دارد، در کفه دیگر ترازو می گذاریم. وقتی که ترازو در حال تعادل باشد، نیروی جاذبه ثقلی وارد بر یک کفه ترازو برابر با نیروی وارد بر کفه دیگر است و در این حال، وزن دو کفه و در نتیجه ، جرم آن دو جسم با هم برابر است.

در شیمی دو اصطلاح جرم و وزن ، از مدتها پیش به جای یکدیگر به کار برده شده است. چنین کاربردی نادرست است ولی در اصطلاحاتی مانند وزن اتمی، وزن مولکولی و درصد وزنی کاملا جا افتاده است. تعیین جرم از طریق مقایسه وزن صورت می گیرد و معمولا در نوشتن و گفتن، فعل وزن کنید از عبارت جرم را تعیین کنید آسانتر به نظر می رسد. به طور کلی از این کاربرد نابجا اشتباه مهمی ناشی نمی شود ودر متونی که این اصطلاحات به کار رفته است، معنی دقیق آنها تقریبا روشن است.

ماده به سه حالت فیزیکی گاز، مایع و جامد وجود دارد. گاز شکل و حجم ثابتی ندارد و در هر ظرفی که وارد شود آن را کاملا پر می کند ودر حد نسبتا وسیعی فشرده و منبسط می شود. مایع نیز شکل ثابتی ندارد ولی در حد حجمی که اشغال می کند به شکل ظرف خود در می آید. حجم مایعات با تغییر دما و فشار تغییر چندانی نمی کند. یک جامد در شرایط عادی حجم و شکل ثابتی دارد. تغییرات مشاهده شده در حجم جامدات نسبت به دما و فشار بسیار کم است.

تغییر حالت (مانند ذوب شدن یک جامد و تبخیر یک مایع) و همچنین تغییر شکل یا تغییر وضع اجزاء یک جسم، نمونه هایی از تغییرات فیزیکی اند، یعنی تغییراتی که با تولید گونه های جدید شیمیایی همراه نیستند. با اعمال فیزیکی (مانند صاف کردن و تقطیر) می توان اجزاء یک مخلوط را از هم جدا کرد، ولی نمی توان ماده ای را که در مخلوط اصلی وجود ندارد، با این اعمال تولید کرد. اما در مقابل تغییرات شیمیایی، تحولاتی هستند که در جریان آنها موادی به مواد دیگر تبدیل می شوند.

یک ماده از روی خواص ذاتی خود یعنی صفاتی که آن را از دیگر انواع ماده متمایز می کند، مشخص می شود. خواصی مانند دانسیته ، رنگ، حالت فیزیکی، نقطه ذوب و رسانایی الکتریکی، خواص فیزیکی نامیده می شود. زرا این گونه خواص را ، بدون آنکه تغییری در ترکیب شیمیایی نمونه مورد نظر پدید آید، می توان مشاهده کرد. خواص شیمیایی یک ماده آنگونه خواصی است که تغییرات شیمیایی واکنشهای شیمیایی) آن ماده را بیان می کند. خواصی مانند جرم ، طول و دما را که مشخص کننده نوع ماده به خصوصی نیستند، خواص عارضی می نامیم.

بخش مشخصی از ماده که تمام آن از نظر ترکیب و خواص ذاتی یکسان و یکنواخت باشد یک فاز نامیده می شود. اگر ماده ای فقط شامل یک فاز باشد آن را همگن، و اگر بیش از یک فاز باشد آن را ناهمگن می نامیم. آهن، نمک و محلول نمک در آب هر یک موادی همگن اند. چوب، گرانیت و مخلوطی از یخ و آب هر یک موادی ناهمگن اند.

فازهای یک ماده ناهمگن حدود مرزی مشخصی دارند و معمولا به آسانی قابل تشخیص اند. مثلا در گرانیت، بلورهای صورتی رنگ فلدسپار، بلورهای بی رنگ کوارتز و بلورهای سیاه و درخشان میکا از یکدیگر تمیز داده می شوند. وقتی عده فازهای یک نمونه معین شوند، تمام قسمتهای همانند آن، یک فاز واحد به شمار می آیند. بنابراین، گرانیت شامل سه فاز است.مواد ناهمگن ، ترکیب ثابتی ندارند و بنابراین مخلوط اند. مثلا نسبت اجزاء سه فاز گرانیت، از نمونه ای به نمونه دیگر تغییر می کند. بتابراین ممکن است، بی نهایت مخلوط ناهمگن وجود داشته باشد، زیرا نسبت اجزاء متفاوتی که در یک ماده ناهمگن وجود دارد، به هیچ وجه محدودیتی وجود ندارد.

مخلوط های همگن را محلول می نامیم. محلول ممکن است در یک فاز گازی، مایع یا جامد وجود داشته باشد. هوا، محلول نمک در آب و آلیاژ طلا_نقره به ترتیب نمونه هایی از محلولهای گازی، مایع و جامد می باشند. گازها به هر نسبت با یکدیگر می آمیزند ولی در محلولهای مایع و جامد معمولا برای انحلال ماده ای در ماده دیگر، محدودیت وجود دارد. با وجود این ، ترکیب محلولها تغییر پذیر است. یعنی از چند نوعی که با هم محلولی به وجود می آورند می توان محلولهایی به نسبتهای دیگر تهیه کرد . بنابراین محلولها نوعی مخلوط اند.

در یک مخلوط ناهمگن، هر فاز خواص مخصوص به خود را دارد، اما مخلوط همگن، یگ گروه خواص ذاتی واحد دارد که هر یک از این خواص به ترکیب مخلوط وابسته است. مثلا، وزن حجمی، مزه، نقطه جوش و رسانایی الکتریکی محلول نمک در آب با نسبت مقدار کم نمک و آب تغیر می کند.

مواد خالص، موادی همگن اند که ترکیب ثابت و خواص ذاتی تغییر ناپذیری دارند. دو نوع ماده خالص وجود دارد: عنصر و ماده مرکب. عنصر ماده خالصی است که به مواد خالص ساده تر از خود تجزیه نمی شود. ماده مرکب ماده خالصی است که از دو یا چند عنصر به نسبتهای ثابت و معین ترکیب یافته است. بنابراین، هیدروژن و اکسیژن هر کدام یک عنصرند و آب ماده مرکبی است که از 19/11% هیدروژن و 81/88% اکسیژن ترکیب یافته است.تهیه یک ماده مرکب از عناصر تشکیل دهنده آن را سنتز می گوییم و تجزیه یک ماده مرکب به عناصر تشکیل دهنده آن را تجزیه می نامیم.

 

برای دریافت پروژه اینجا کلیک کنید

کلمات کلیدی :